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Motivation: Hypersonic Reentry Simulation
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SPARC Compressible CFD Code ) 2.

= State-of-the-art hypersonic CFD on next-gen platforms

=  Production: hybrid structured-unstructured finite volume methods

=  R&D: high order unstructured discontinuous collocation element methods
= Perfect and thermo-chemical non-equilibrium gas models
=  RANS and hybrid RANS-LES turbulence models

= Enabling technologies

= Scalable solvers
" Embedded geometry & meshing
= Embedded UQ and model calibration

= Credibility

= Validation against wind tunnel and flight test data

= Visibility and peer review by external hypersonics community
= Software quality

= Rigorous regression, V&V and performance testing
= Software design review and code review culture



Performance Portability - Kokkos @&
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Performance Portability )

The problem on Heterogenous Architectures (e.g. ATS-2)
« C++ virtual functions (and function pointers) are not (easily) portable

* Answers?
1. Kokkos support for portable virtual functions
2. C++ standard support for portable virtual functions
3. Run-time->compile-time polymorphism

SPARC has taken the ‘run-time->compile-time polymorphism’ approach

With this approach, we needed a mechanism to dispatch functions
dynamically (run-time) or statically (compile-time)

Dynamic dispatch is possible on GPUs but requires the object be created
for each thread or team on the GPU




Performance Portability )

template <bool is dyn, typename Type=MyClass>
struct Dispatcher {

static voild my func (const MyClass* obj)

static cast<const Type*>(obj)->Type::my funcT();
i

Now we need a mechanism to convert run-time polymorphism to
compile-time polymorphism so we can dispatch functions statically

Enter the rt2ct chain...

A “Create” chain is used to piece together compile-time instantiations of classes
The end of the chain (which is all compile-time) is handed to a Kokkos kernel

In this way, we can arbitrarily handle combinations of physics models
(GasModels, FluxFunctions, BoundaryConditions) for (efficient) execution

on GPUs ’




Threaded Assembly/Solves )

Threaded Assembly on Structured Grids: MeshTraverserKernel

MeshTraverserKernel allows a physics code (think flux/flux Jacobian
computation and assembly) to operate on a structured (i, j, k) block
- implements a multi-dimensional range policy for Kokkos: :parallel for
- provides 1, 7, k line traversal (CPU/KNL) and ‘tile’ traversal (GPU)

class PhysicsKernel
public MeshTraverserKernel<PhysicsKernel>

{ /* ... */ };

Array4D node-level multi-dimensional data for a structured block
- wraps a Kokkos: :DualView

Graph coloring (red-black) to avoid atomics during assembly

Threaded solves provided through Tpetra/Belos (point-implicit, GMRES)
- OpenMP used for SPARC'’s native point-implicit and line-implicit solvers

Net result of FY16 work: SPARC is running, end-to-end,

(equation assembly + solve) on the GPU ,




Performance Portability )

= SPARC is running on all testbed, capacity & capability platforms
available to SNL, notably:
Knights Landing (KNL) testbed

Power8+GPU testbed
Sandy Bridge & Broadwell CPU-based ‘commodity clusters’

ATS-1 — Trinity (both Haswell and KNL partitions)
ATS-2 — Power8+P100 ‘early access’ system




SPARC vs Sierra/Aero Performance @i
For the Generic Reentry Vehicle use-case...

Investigation of CPU-only, MPI-only performance

Code Grid/Nodes EA t/s [s| | Speedup || ES t/s [s] | Speedup || T/S [s] || Speedup
Sierra/Aero 4M cells/1 node 1.15 1.00 x 1.26 1.00 x 2.56 1.00 x
SPARC (Str) 4M cells/1 node 0.585 1.96 x 0.803 1.57 x 1.46 1.75 x
SPARC (Uns) 4M cells/1 node 0.433 2.64 X 0.808 1.56 x 1.38 1.85 x

Sierra/Aero | 32M cells/8 nodes 1.23 sec 1.00 x 1.36 sec 1.00 x 2.77 sec|| 1.00 x
SPARC (Str) 32M cells/8 nodes 0.505 sec | 2.44 X 0.823 sec | 1.66 x | 1.44 sec|| 1.93 x
SPARC (Uns) | 32M cells/8 nodes 0.446 sec | 2.77 X 0.836 sec | 1.63 x || 1.43 sec|| 1.93 x

Sierra/Aero | 256M cells/64 nodes 1.53 sec 1.00 x 1.51 sec 1.00 x 3.23 sec|| 1.00 x
SPARC (Str) | 256M cells/64 nodes || 0.581 sec | 2.63 X 0.829 sec | 1.82 x 1.50 sec|| 2.15 x
SPARC (Uns) | 256M cells/64 nodes || 0.465 sec | 3.28 X 0.849 sec | 1.78 x || 1.46 sec|| 2.21 x

(EA t/s = Equation Assembly time/step; ES t/s = Equation Solve time/step; T/S = Total Time/Step)

SPARC performing ~2x faster than Sierra/Aero

Parallel efficiency is better than Sierra/Aero

Even higher performance from SPARC for CPU-only systems will
come with continued investment in NGP performance optimization
Structured vs unstructured performance...
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SPARC: Strong Scaling Analysis ) .

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces
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SPARC: Strong Scaling Analysis ) .

For one critical MPl communication during equation assembly...

Halo Exchange
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- Something is amiss with GPU-GPU MPI on P8/P100 systems
- Apparently this will be fixed with P9/Volta?
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SPARC: Strong Scaling Analysis ) .

For the linear equation solve...

Linear Equation Solver
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SPARC: Weak Scaling Analysis T .

For the heaviest kernel during equation assembly...

Compute Residual: Interior Faces
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SPARC: Weak Scaling Analysis T .

For one critical MPl communication during equation assembly...

1 Halo Exchange

- Problematic MPI behavior on P8/P100 systems...
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SPARC: Weak Scaling Analysis T .

For the linear equation solve...

Linear Equation Solver

0.5 — -------------------------- - Solves on threaded KNL ~2x faster than HSW/BDW
: .| - Higher performance at scale for low rank/high thread count KNL
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Positive and Negative Experiences Developing
PP Code

= Positive
= Kokkos has helped — we can claim we are mostly portable and performant
= The amount of architecture specific code is insignificant

= Faster code has resulted from designing performance portable code
= Negative

= The DevOps challenge: building the codes and its dependent libraries on
several disparate architectures and establishing testing

The Performance analysis challenge: collecting meaningful performance
data on each architecture

= Developing for the GPU:
= This drove a lot of our software design decisions

= A CPU-only build on a Linux workstation with Intel compiler:
— Clean: 13 min; Incremental: 3 min

= A GPU build on a Power8 node with GCC/Cuda8 compiler:
— Clean: 47 min, Incremental: 40 min
16



Summary

= SPARC s being developed as a performance portable
compressible CFD code to address the challenges posed by
next-generation computing platforms

= ‘The good’ for performance portability and SPARC:
= CPU-only, MPIl-only performance is ~2x faster than the reference code

= Linear solves are ~2x faster for threaded KNL than CPU
=  Most significant assembly kernels are ~2x faster for P100 than CPU

= Future work for performance portability and SPARC:

= |mprove assembly performance for KNL -> vectorization

= Hope for the best for halo exchange on P9/Volta (and reduce our MPI comm)
= Work on solver performance for GPUs
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